Source code for pymedphys._electronfactors.core

# Copyright (C) 2015 Simon Biggs

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version (the "AGPL-3.0+").

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License and the additional terms for more
# details.

# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

# ADDITIONAL TERMS are also included as allowed by Section 7 of the GNU
# Affero General Public License. These additional terms are Sections 1, 5,
# 6, 7, 8, and 9 from the Apache License, Version 2.0 (the "Apache-2.0")
# where all references to the definition "License" are instead defined to
# mean the AGPL-3.0+.

# You should have received a copy of the Apache-2.0 along with this
# program. If not, see <http://www.apache.org/licenses/LICENSE-2.0>.


"""Model insert factors and parameterise inserts as equivalent ellipses."""


import numpy as np
from scipy.interpolate import SmoothBivariateSpline
from scipy.optimize import basinhopping

try:
    import shapely.affinity
    import shapely.geometry
except ImportError:
    pass


[docs]def spline_model( width_test, ratio_perim_area_test, width_data, ratio_perim_area_data, factor_data ): """Return the result of the spline model. The bounding box is chosen so as to allow extrapolation. The spline orders are two in the width direction and one in the perimeter/area direction. For justification on using this method for modelling electron insert factors see the *Methods: Bivariate spline model* section within <http://dx.doi.org/10.1016/j.ejmp.2015.11.002>. Parameters ---------- width_test : np.ndarray The width point(s) which are to have the electron insert factor interpolated. ratio_perim_area_test : np.ndarray The perimeter/area which are to have the electron insert factor interpolated. width_data : np.ndarray The width data points for the relevant applicator, energy and ssd. ratio_perim_area_data : np.ndarray The perimeter/area data points for the relevant applicator, energy and ssd. factor_data : np.ndarray The insert factor data points for the relevant applicator, energy and ssd. Returns ------- result : np.ndarray The interpolated electron insert factors for width_test and ratio_perim_area_test. """ bbox = [ np.min([np.min(width_data), np.min(width_test)]), np.max([np.max(width_data), np.max(width_test)]), np.min([np.min(ratio_perim_area_data), np.min(ratio_perim_area_test)]), np.max([np.max(ratio_perim_area_data), np.max(ratio_perim_area_test)]), ] spline = SmoothBivariateSpline( width_data, ratio_perim_area_data, factor_data, kx=2, ky=1, bbox=bbox ) return spline.ev(width_test, ratio_perim_area_test)
def _single_calculate_deformability(x_test, y_test, x_data, y_data, z_data): """Return the result of the deformability test for a single test point. The deformability test applies a shift to the spline to determine whether or not sufficient information for modelling is available. For further details on the deformability test see the *Methods: Defining valid prediction regions of the spline* section within <http://dx.doi.org/10.1016/j.ejmp.2015.11.002>. Parameters ---------- x_test : float The x coordinate of the point to test y_test : float The y coordinate of the point to test x_data : np.ndarray The x coordinates of the model data to test y_data : np.ndarray The y coordinates of the model data to test z_data : np.ndarray The z coordinates of the model data to test Returns ------- deformability : float The resulting deformability between 0 and 1 representing the ratio of deviation the spline model underwent at the point in question by introducing an outlier at the point in question. """ deviation = 0.02 adjusted_x_data = np.append(x_data, x_test) adjusted_y_data = np.append(y_data, y_test) bbox = [ min(adjusted_x_data), max(adjusted_x_data), min(adjusted_y_data), max(adjusted_y_data), ] initial_model = SmoothBivariateSpline( x_data, y_data, z_data, bbox=bbox, kx=2, ky=1 ).ev(x_test, y_test) pos_adjusted_z_data = np.append(z_data, initial_model + deviation) neg_adjusted_z_data = np.append(z_data, initial_model - deviation) pos_adjusted_model = SmoothBivariateSpline( adjusted_x_data, adjusted_y_data, pos_adjusted_z_data, kx=2, ky=1 ).ev(x_test, y_test) neg_adjusted_model = SmoothBivariateSpline( adjusted_x_data, adjusted_y_data, neg_adjusted_z_data, kx=2, ky=1 ).ev(x_test, y_test) deformability_from_pos_adjustment = (pos_adjusted_model - initial_model) / deviation deformability_from_neg_adjustment = (initial_model - neg_adjusted_model) / deviation deformability = np.max( [deformability_from_pos_adjustment, deformability_from_neg_adjustment] ) return deformability
[docs]def calculate_deformability(x_test, y_test, x_data, y_data, z_data): """Return the result of the deformability test. This function takes an array of test points and loops over ``_single_calculate_deformability``. The deformability test applies a shift to the spline to determine whether or not sufficient information for modelling is available. For further details on the deformability test see the *Methods: Defining valid prediction regions of the spline* section within <http://dx.doi.org/10.1016/j.ejmp.2015.11.002>. Parameters ---------- x_test : np.ndarray The x coordinate of the point(s) to test y_test : np.ndarray The y coordinate of the point(s) to test x_data : np.ndarray The x coordinate of the model data to test y_data : np.ndarray The y coordinate of the model data to test z_data : np.ndarray The z coordinate of the model data to test Returns ------- deformability : float The resulting deformability between 0 and 1 representing the ratio of deviation the spline model underwent at the point in question by introducing an outlier at the point in question. """ dim = np.shape(x_test) if np.size(dim) == 0: deformability = _single_calculate_deformability( x_test, y_test, x_data, y_data, z_data ) elif np.size(dim) == 1: deformability = np.array( [ _single_calculate_deformability( x_test[i], y_test[i], x_data, y_data, z_data ) for i in range(dim[0]) ] ) else: deformability = np.array( [ [ _single_calculate_deformability( x_test[i, j], y_test[i, j], x_data, y_data, z_data ) for j in range(dim[1]) ] for i in range(dim[0]) ] ) return deformability
[docs]def spline_model_with_deformability( width_test, ratio_perim_area_test, width_data, ratio_perim_area_data, factor_data ): """Return the spline model for points with sufficient deformability. Calls both ``spline_model`` and ``calculate_deformability`` and then adjusts the result so that points with deformability greater than 0.5 return ``np.nan``. Parameters ---------- width_test : np.ndarray The width point(s) which are to have the electron insert factor interpolated. ratio_perim_area_test : np.ndarray The perimeter/area which are to have the electron insert factor interpolated. width_data : np.ndarray The width data points for the relevant applicator, energy and ssd. ratio_perim_area_data : np.ndarray The perimeter/area data points for the relevant applicator, energy and ssd. factor_data : np.ndarray The insert factor data points for the relevant applicator, energy and ssd. Returns ------- model_factor : np.ndarray The interpolated electron insert factors for width_test and ratio_perim_area_test with points outside the valid prediction region set to ``np.nan``. """ deformability = calculate_deformability( width_test, ratio_perim_area_test, width_data, ratio_perim_area_data, factor_data, ) model_factor = spline_model( width_test, ratio_perim_area_test, width_data, ratio_perim_area_data, factor_data, ) model_factor[deformability > 0.5] = np.nan return model_factor
[docs]def calculate_percent_prediction_differences( width_data, ratio_perim_area_data, factor_data ): """Return the percent prediction differences. Calculates the model factor for each data point with that point removed from the data set. Used to determine an estimated uncertainty for prediction. Parameters ---------- width_data : np.ndarray The width data points for a specific applicator, energy and ssd. ratio_perim_area_data : np.ndarray The perimeter/area data points for a specific applicator, energy and ssd. factor_data : np.ndarray The insert factor data points for a specific applicator, energy and ssd. Returns ------- percent_prediction_differences : np.ndarray The predicted electron insert factors for each data point with that given data point removed. """ predictions = [ spline_model_with_deformability( width_data[i], ratio_perim_area_data[i], np.delete(width_data, i), np.delete(ratio_perim_area_data, i), np.delete(factor_data, i), ) for i in range(len(width_data)) ] percent_prediction_differences = 100 * (factor_data - predictions) / factor_data return percent_prediction_differences
def shapely_insert(x, y): """Return a shapely object from x and y coordinates.""" return shapely.geometry.Polygon(np.transpose((x, y))) def search_for_centre_of_largest_bounded_circle(x, y, callback=None): """Find the centre of the largest bounded circle within the insert.""" insert = shapely_insert(x, y) boundary = insert.boundary centroid = insert.centroid furthest_distance = np.hypot( np.diff(insert.bounds[::2]), np.diff(insert.bounds[1::2]) ) def minimising_function(optimiser_input): x, y = optimiser_input point = shapely.geometry.Point(x, y) if insert.contains(point): edge_distance = point.distance(boundary) else: edge_distance = -point.distance(boundary) return -edge_distance x0 = np.squeeze(centroid.coords) niter = 200 T = furthest_distance / 3 stepsize = furthest_distance / 2 niter_success = 50 output = basinhopping( minimising_function, x0, niter=niter, T=T, stepsize=stepsize, niter_success=niter_success, callback=callback, ) circle_centre = output.x return circle_centre def calculate_width(x, y, circle_centre): """Return the equivalent ellipse width.""" insert = shapely_insert(x, y) point = shapely.geometry.Point(*circle_centre) if insert.contains(point): distance = point.distance(insert.boundary) else: raise Exception("Circle centre not within insert") return distance * 2 def calculate_length(x, y, width): """Return the equivalent ellipse length.""" insert = shapely_insert(x, y) length = 4 * insert.area / (np.pi * width) return length
[docs]def parameterise_insert(x, y, callback=None): """Return the parameterisation of an insert given x and y coords.""" circle_centre = search_for_centre_of_largest_bounded_circle(x, y, callback=callback) width = calculate_width(x, y, circle_centre) length = calculate_length(x, y, width) return width, length, circle_centre
[docs]def visual_alignment_of_equivalent_ellipse(x, y, width, length, callback): """Visually align the equivalent ellipse to the insert.""" insert = shapely_insert(x, y) unit_circle = shapely.geometry.Point(0, 0).buffer(1) initial_ellipse = shapely.affinity.scale( unit_circle, xfact=width / 2, yfact=length / 2 ) def minimising_function(optimiser_input): x_shift, y_shift, rotation_angle = optimiser_input rotated = shapely.affinity.rotate( initial_ellipse, rotation_angle, use_radians=True ) translated = shapely.affinity.translate(rotated, xoff=x_shift, yoff=y_shift) disjoint_area = ( translated.difference(insert).area + insert.difference(translated).area ) return disjoint_area / 400 x0 = np.append(np.squeeze(insert.centroid.coords), np.pi / 4) niter = 10 T = insert.area / 40000 stepsize = 3 niter_success = 2 output = basinhopping( minimising_function, x0, niter=niter, T=T, stepsize=stepsize, niter_success=niter_success, callback=callback, ) x_shift, y_shift, rotation_angle = output.x return x_shift, y_shift, rotation_angle
def parameterise_insert_with_visual_alignment( x, y, circle_callback=None, visual_ellipse_callback=None, complete_parameterisation_callback=None, ): """Return an equivalent ellipse with visual alignment parameters.""" width, length, circle_centre = parameterise_insert(x, y, callback=circle_callback) if complete_parameterisation_callback is not None: complete_parameterisation_callback(width, length, circle_centre) x_shift, y_shift, rotation_angle = visual_alignment_of_equivalent_ellipse( x, y, width, length, callback=visual_ellipse_callback ) return width, length, circle_centre, x_shift, y_shift, rotation_angle def convert2_ratio_perim_area(width, length): """Convert width and length data into ratio of perimeter to area.""" perimeter = ( np.pi / 2 * (3 * (width + length) - np.sqrt((3 * width + length) * (3 * length + width))) ) area = np.pi / 4 * width * length return perimeter / area def create_transformed_mesh(width_data, length_data, factor_data): """Return factor data meshgrid.""" x = np.arange( np.floor(np.min(width_data)) - 1, np.ceil(np.max(width_data)) + 1, 0.1 ) y = np.arange( np.floor(np.min(length_data)) - 1, np.ceil(np.max(length_data)) + 1, 0.1 ) xx, yy = np.meshgrid(x, y) zz = spline_model_with_deformability( xx, convert2_ratio_perim_area(xx, yy), width_data, convert2_ratio_perim_area(width_data, length_data), factor_data, ) zz[xx > yy] = np.nan no_data_x = np.all(np.isnan(zz), axis=0) no_data_y = np.all(np.isnan(zz), axis=1) x = x[np.invert(no_data_x)] y = y[np.invert(no_data_y)] zz = zz[np.invert(no_data_y), :] zz = zz[:, np.invert(no_data_x)] return x, y, zz